Laserfiche WebLink
t 1 <br /> Page 6 of 8 <br /> "FOOTINGS.xls"Program <br /> Version 3.4 <br /> Results: Nomenclature for Biaxial Eccentricity: <br /> Total Resultant Load and Eccentricities: Case 1: For 3 Corners in Bearing <br /> EPz= -436.40 kips (Dist.x>L and Dist.y>B) <br /> ex= 0.15 ft.(<=L/6) Dist.x JJ <br /> ey= -6.57 ft.(>8/6) - 'I P• max <br /> I Brg.Ly <br /> Overturning Check: <br /> IMrx= 4800.40 ft-kips <br /> EMox= 2865.00 ft-kips <br /> FS(ot)x= 1.676 (>=1.5) J1 <br /> Dist.y <br /> Entry= 4800.40 ft-kips Line of zero <br /> EMoy= 64.40 ft-kips pressure LBrq.Lx,, <br /> FS(ot)y= 74.540 (>=1.5) <br /> Sliding Check: Case 2: For 2 Corners in Bearing <br /> Pass(x)= 63.36 kips (Dist.x>L and Dist.y<= B) <br /> Frict(x)= 174.56 kips I Dist.x J <br /> FS(slid)x= 14.778 (>=1.$) I P• max <br /> Passive(y)= 63.36 kips -Brg.Lyl A <br /> Frict(y)= 174.56 klps <br /> FS(slid)y= N.A. Dist.y <br /> Brg.Ly2 <br /> Uplift Check: <br /> EPz(down)= -436.40 kips Line of zero <br /> EPz(uplift)= 0.00 kips pressure <br /> FS(uplift)= N.A. <br /> Bearing Length and%Bearing Area: Case 3: For 2 Corners in Bearing <br /> Dist.x= 548.703 ft. (Dist.x<=L and Dist.y>B) <br /> Dist.y= 13.558 ft. L Dist.x <br /> Brg.Lyl = 13.014 ft. Brq.Lx2 P• max <br /> Brg.Ly2=_ 13.558 ft. <br /> %Brg.Area= 60.39 % j <br /> Biaxial Case= Case 2 6•ex/L+6*ey/B=1.833 <br /> Gross Soil Bearing Corner Pressures: Dist.y <br /> P1 = 3.047 ksf Line of zero <br /> P2= 0.000 ksf pressure Brp.Lx1 <br /> P3= 0.000 ksf <br /> P4= 2.924 ksf <br /> Case 4: For 1 Corner in Bearing <br /> (Dist.x<=L and Dist.y<=B) <br /> P3=0 k A P2=0 ksf Dist.x <br /> c ry Brg.Lx <br /> -. a Pmax ^ <br /> or <br /> P4=2.924 ksf L P1=3.047 ksf <br /> CORNER PRESSURES Dist.y <br /> Brg.Ly <br /> Maximum Net Soil Pressure: Line of zero <br /> Pmax(net)= Pmax gross-(D+T)"ys pressure <br /> Pmax(net)= 2.567 ksf <br /> 2 of 2 10/16/2019 1:35 PM <br />