|
1 Job Name: 76th St-Everett,WA-180'SS Tower P S-1
<br /> z'`„r Northwest Tower Engineering tee,
<br /> 3426 Broadway, Suite 302
<br /> '"s� Project Number: 200622.07 Date: 01/29/21
<br /> \ Everett,WA 98201
<br /> Wie'i Phone:425-258-4248 Client Name: SNO911 Br HC
<br /> Fax 425-258-4289
<br /> Calculation Performe Radio Rack Seismic Hold Down Anchorage 8
<br /> Site Name: 76th St
<br /> Site Location: Everett,WA g
<br /> Tower Height: 180'SS Tower
<br /> Project Number: 200622.07 i . : �r-l" t
<br /> Fl
<br /> Client: SNO911 r , 1*.,
<br /> F' 1 D, t,
<br /> Cabinet Info: B#
<br /> Chatsworth Products',] Equipment Rack Manufacturer i.` rr
<br /> SeismicFrame Two Post Rack Equipment Rack Model Number F' z,'
<br /> 7'x 2'x 1'-3" Equipment Rack Description t' 1
<br /> j
<br /> H Heigh6Raak)— 84 (in) Overall Height of Equipment Rack(per Manufacturer) 1 - , 4,p
<br /> D(DyatRaey= 15 (in) Overall Depth of Equipment Rack(with Radios) j
<br /> W(WdIMReok)= 24 (in) Overall Width of Equipment Rack(per Manufacturer) f. 1
<br /> Sk,,.,„;M,,.sp,=iee) 10.5 (in) Minimum Anchor Bolt Spacing(per Manufacturer) € w x
<br /> R,
<br /> 1r(Cmus-Gravity-Rack)— 48 (in) Height to Center of Gravity 1 i 7
<br /> (k(gmre �> 2 (quantity) Number of Anchor points in each side(long direction) l y
<br /> Wpip,,g 500 (lb) Typical Weight of Equipment Rack(Full)
<br /> act"sn,i I.
<br /> 1,t 37;,
<br /> Check Overall Stability For Over Turning: t, ( r 1
<br /> SEISMIC NOMENCLATURE I. •`
<br /> r h
<br /> a p= 1.0 Seismic Coefficient for Mechanical and Electrical Components(ASCE 7-16,Table 1:, ni
<br /> R 2.5 Seismic Coefficient for Mechanical and Electrical Components(ASCE 7-16,Table 1} 45'
<br /> I = 1.5 Importance Factor,for equipment re uired to function after earthquake (ASCE 7-16, .,' l
<br /> v mP4 4 :<'d rt
<br /> Z✓he= 0 (ft) Generator at Ground Level El"hK
<br /> Site Class= D Soil Class(ASCE 7-16,Table 20.3-1)ABC Dirt Inc.Report
<br /> Ss= 1.36 0.2 Second Mapped Spectral Acceleration(IBC 18, Sec.1613.2.1,Fig.1613.2.I(I))(ASCE 7-16,Fig.22-1)
<br /> Si= 0.48 1.0 Second Mapped Spectral Acceleration(IBC 18,Sec.1613.2.1,Fig.I613.2.1(2))(ASCE 7-16,Fig.22-2)
<br /> Fe= 1.00 Site Coefficient Fa(IBC 18,Table 1613.2.3(1))(ASCE 7-16,Table 11.4-1) .
<br /> F = 1.90 Site Coefficient Fv(IBC 18,Table 161323(2))(ASCE 7-16,Table 11.4-2)
<br /> r= 1.00 Redundancy Factor(ASCE 7-16,13.3.1)
<br /> no= 2.0 Seismic Coefficient for Mechanical and Electrical Components(ASCE 7-16,Table 13.6-1)
<br /> SEISMIC CALCULATIONS:
<br /> Evaluate structure's ability to resist effects of earthquake loads in accordance with ASCE 7-16,(IBC 18,1613.1).
<br /> Wp= Wp= 500.00 (lb) Total Component Operating Weight
<br /> Sh,s=F,S, 1.360 Maximum EQ Spectral Response(0.2 sec)(ASCE 7-16,EQUATION 11.4-1)
<br /> Sr.=F S1 0.912 Maximum EQ Spectral Response(1 sec)(ASCE 7-16,EQUATION 11.4-2)
<br /> Sips=(2/3)SMs 0.906 (ASCE 7-16,EQUATION 11.4-3)
<br /> SDI=(2/3)SM, 0.607 (ASCE 7-16,EQUATION 11.4-4)
<br /> FP 0.4a,SmsWp•(1+2„)= 109 (lb) Seismic Design Force(ASCE 7-16,Eq 13.3-1)
<br /> (RJ(p)
<br /> Fp=1.6•ScalpWp= 1087 (lb) Need Not Exceed,Seismic Design Force(ASCE 7-16,Eq 13.3-2) 24 in
<br /> FP.3•SosipWp= 204 (Ib) Shall Not Be Less Than,Seismic Design Force(ASCE 7-16,Eq 13.3-3) <
<br /> Use FP (13.3-3) 204 (lb) Seismic Design Force Used
<br /> E,,,=E„„-F., (ASCE 7-16,12.4.3)Seismic Load Effects Including Overstrength
<br /> Seismic Base Shear=E,a,=OaQE=O0Fp= 408 (lb) (ASCE 7-16,12.4.3.1)Seismic Base Shear
<br /> Basic Seismic Load Combo. (0.9-0.2Scc)D+E,a, Basic Seismic Load Combination(ASCE 7-16,2.3.6,ASCE 7-16,12.14.3.2)
<br /> Seismic Load((,g,wa7=(0.9-0.2SDs)= 359 (Ib) Minimum Vertical Component,Basic Seismic Load Combination
<br /> 3591b
<br /> Seismic Loadavbx Hem)= E,,,i,= 408 (lb) Max Horizontal Component,Basic Seismic Load Combination 408 lb i
<br /> S M A=0=37.6*4'+359.4.0.4'-B•0.9'=0 Summation of Moments about Point"A"
<br /> B= 2043 (lb) Vertical Force at Point"B" wirmiimor
<br /> S F y=0= 2043-359.4-A=0 Summation of Forces in the Vertical Directic 48 in
<br /> Uplift A= 1684 (lb) Vertical Force at Point"A"
<br /> 11.
<br /> Max Uplift(pe,m,el,erl= A/n(mmehor,)= 842 (Ib) Uplift per anchor
<br /> Provide post-installed anchor prequalified /
<br /> Calculate the maximum shear per anchor (13.4.2)for seismic applications
<br /> SFs=0= 407.5-A-B=0 Summation of Forces in the Horizontal Direction"X"
<br /> A=B= 204 (lb) Horizontal Force at Point"A"&"B"
<br /> Seismic Shear(p�rsmho,l= A/n(m,pho,9)= 102 (Ib) Horizontal Shear per anchor
<br />
|