|
Company Boeing
<br />12/17/2024
<br />11RISA
<br />Designer :Daniel Jaffe
<br />3:46:03 PM
<br />Job Number :
<br />Checked By: Clemens Ro...
<br />Model Name : 40-26 4th Floor Cantilever Rack
<br />F,,,,.f,
<br />Cbr°A
<br />= Q zat = 158.22 ksi
<br />Sf
<br />Critical elastic lateral -torsional buckling stress (Eq. F2.1.1-1)
<br />For
<br />F°,, > 2.78Fy, F = Fy = 42 ksi
<br />Global flexural stress
<br />(Eq. F2.1-3)
<br />My
<br />= SfyFy = 25.756 k- ft
<br />Member yield moment
<br />(Eq. F2.1-2)
<br />M.,
<br />= SfF„, < My = 25.756 k-ft
<br />Flexural resistance for yielding and global
<br />(Eq. F2.1-1)
<br />(lateral -torsional) buckling
<br />Local Buckling Interacting with Yielding and Global Buckling
<br />Fy =
<br />42 ksi
<br />Specified minimum yield stress
<br />F,, =
<br />42 ksi
<br />Global flexural stress
<br />(Sec. F2)
<br />S,,t =
<br />6.269 in
<br />Effective section modulus calculated at
<br />(Program
<br />extreme fiber tension stress of Fy
<br />Calculated)
<br />R =
<br />1
<br />Reduction factor
<br />(Eq. 114-1)
<br />S,
<br />6.269 in
<br />Effective section modulus
<br />(Program
<br />Calculated)
<br />M,,l
<br />= S,F,, < SetFyR = 21.941 k-ft
<br />Flexural resistance for local buckling
<br />(Eq. F3.1-1 &
<br />Eq. H4-1)
<br />M,,,z
<br />= min(M,,(,, M,,,1) = 21.941 k- ft
<br />Flexural resistance
<br />Oby
<br />= 0.9
<br />Resistance factor in flexure
<br />M at°°,
<br />y = Ob min(RSeF, , RSetF) = 19.748 k- ft
<br />y
<br />Factored flexural resistance for globally
<br />(Sec. H2)
<br />braced member
<br />M°,y
<br />= ObM„y = 19.747 k-ft
<br />Factored flexural resistance (weak axis)
<br />(Sec. 133.2.2)
<br />My
<br />= M,,Y = 0.028 k-ft
<br />Flexural force due to factored loads (with
<br />respect to y-axis)
<br />Shear Analysis (Major Axis y)
<br />0.006 k 82.129
<br />k 0.000 Pass
<br />E =
<br />29000 ksi
<br />Modulus of elasticity
<br />Fy =
<br />42 ksi
<br />Specified minimum yield stress
<br />µ =
<br />0.3
<br />Poisson's Ratio
<br />h =
<br />d — 2R — 2t = 9.124 in
<br />Depth of flat portion of element in shear
<br />A„ =
<br />ht = 1.715 in 2
<br />Area of element in shear
<br />k„ =
<br />5.34
<br />�r2Ek
<br />Fc,
<br />= 12(1 — µ2)(h1t)2 = 59.424 ksi
<br />Elastic shear buckling stress
<br />(Eq. G2.3-2)
<br />V,,. =
<br />A F,,. = 101.931 k
<br />Shear buckling force
<br />(Eq. G2.3-1)
<br />Vy =
<br />0.6A„F,t = 43.226 k
<br />Yield shear force of cross-section
<br />(Eq. G2.1-5)
<br />Vj
<br />A.,, =
<br />— 0.651
<br />rV,.
<br />Slenderness factor
<br />(Eq. G2.1-4)
<br />For A., < 0.815, Vt = Vy = 43.226 k
<br />Shear resistance
<br />(Eq. G2.1-1)
<br />RISA-3D Version 19 [ 40-26 cantilever rack copy.r3d ] Page 11
<br />
|