Laserfiche WebLink
Company Boeing <br />12/17/2024 <br />11RISA <br />Designer :Daniel Jaffe <br />3:46:03 PM <br />Job Number : <br />Checked By: Clemens Ro... <br />Model Name : 40-26 4th Floor Cantilever Rack <br />F,,,,.f, <br />Cbr°A <br />= Q zat = 158.22 ksi <br />Sf <br />Critical elastic lateral -torsional buckling stress (Eq. F2.1.1-1) <br />For <br />F°,, > 2.78Fy, F = Fy = 42 ksi <br />Global flexural stress <br />(Eq. F2.1-3) <br />My <br />= SfyFy = 25.756 k- ft <br />Member yield moment <br />(Eq. F2.1-2) <br />M., <br />= SfF„, < My = 25.756 k-ft <br />Flexural resistance for yielding and global <br />(Eq. F2.1-1) <br />(lateral -torsional) buckling <br />Local Buckling Interacting with Yielding and Global Buckling <br />Fy = <br />42 ksi <br />Specified minimum yield stress <br />F,, = <br />42 ksi <br />Global flexural stress <br />(Sec. F2) <br />S,,t = <br />6.269 in <br />Effective section modulus calculated at <br />(Program <br />extreme fiber tension stress of Fy <br />Calculated) <br />R = <br />1 <br />Reduction factor <br />(Eq. 1­14-1) <br />S, <br />6.269 in <br />Effective section modulus <br />(Program <br />Calculated) <br />M,,l <br />= S,F,, < SetFyR = 21.941 k-ft <br />Flexural resistance for local buckling <br />(Eq. F3.1-1 & <br />Eq. H4-1) <br />M,,,z <br />= min(M,,(,, M,,,1) = 21.941 k- ft <br />Flexural resistance <br />Oby <br />= 0.9 <br />Resistance factor in flexure <br />M at°°, <br />y = Ob min(RSeF, , RSetF) = 19.748 k- ft <br />y <br />Factored flexural resistance for globally <br />(Sec. H2) <br />braced member <br />M°,y <br />= ObM„y = 19.747 k-ft <br />Factored flexural resistance (weak axis) <br />(Sec. 133.2.2) <br />My <br />= M,,Y = 0.028 k-ft <br />Flexural force due to factored loads (with <br />respect to y-axis) <br />Shear Analysis (Major Axis y) <br />0.006 k 82.129 <br />k 0.000 Pass <br />E = <br />29000 ksi <br />Modulus of elasticity <br />Fy = <br />42 ksi <br />Specified minimum yield stress <br />µ = <br />0.3 <br />Poisson's Ratio <br />h = <br />d — 2R — 2t = 9.124 in <br />Depth of flat portion of element in shear <br />A„ = <br />ht = 1.715 in 2 <br />Area of element in shear <br />k„ = <br />5.34 <br />�r2Ek <br />Fc, <br />= 12(1 — µ2)(h1t)2 = 59.424 ksi <br />Elastic shear buckling stress <br />(Eq. G2.3-2) <br />V,,. = <br />A F,,. = 101.931 k <br />Shear buckling force <br />(Eq. G2.3-1) <br />Vy = <br />0.6A„F,t = 43.226 k <br />Yield shear force of cross-section <br />(Eq. G2.1-5) <br />Vj <br />A.,, = <br />— 0.651 <br />rV,. <br />Slenderness factor <br />(Eq. G2.1-4) <br />For A., < 0.815, Vt = Vy = 43.226 k <br />Shear resistance <br />(Eq. G2.1-1) <br />RISA-3D Version 19 [ 40-26 cantilever rack copy.r3d ] Page 11 <br />